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ON THE STABILITY OF PERIODIC POINCARE SOLUTIONS
OF HAMILTONIAN SYSTEMS IN THE DEGENERATE CASE™

A.A. SAITBATTALOV

The sufficient conditions for the orbital stability of periodic Poincaré
solutions in the case of natural degeneracy are obtained for a certain
class of Hamiltonian systems with two degrees of freedom. The orbital
stability of periodic Poincar§ solutions in the problem of periodic

motions relative to the centre of mass of a dynamically symmetric artificial
satellite with an inertia ellipsoid close to a sphere, in a circular orbit,
is investigated as an application.

1. Poincaré's theorem. The autonomous system with two degrees of freedom being
examined has a Hamiltonian of the form

H=H,(G1) + 0Ga + kZ e"H, (g1, §2: G1, Go) (1.1)
2],

Here g,, g, are generalized coordinates, G,, G, are the corresponding generalized momenta, ® is
a constant quantity, and e is a small parameter. It is assumed that # is a 2a-periodic function
of the generalized coordinates, analytic in all its arguments in some domain of phase space
M=TXxQ(@CR®». When e =0 the equations of motion with Hamiltonian (1.l) have the
solution
Gi=12;, Go=12, g1 =t + Y, L= 0t + Y, = dHzg)/dr, (L.2)

where z;, ¥ (i = 1, 2) are constant quantities. When & = ( the Hessian of H with respect to the
variables G,, G; equals zero identically and we have the degenerate case. We assume that the
hypotheses of Poincaré's theorem on the existence of periodic solutions of a system with
Hamiltonian (1.l) are satisfied, i.e., initial values x;,¥; (i = 1, 2) exist /1l/ such that the
following conditions are satisfied:

1) the generating solution (1.2) is periodic with period T, i.e., ;T and ol are mult-
iples of 2n, 0 =loym (I Z, msN)

d*H, (Gy)

2) e
d(Hy» 9 <Hy =0
3) 312 - By, -
R CH,y dHy
By, Ay, O,
4) det Y2 Y2 0Zq 0

BHy BHy
01y Oys dz,®

T
(¢t =+ § Hy @t + 10, 0t -+ ya, 21,29 )
0

We choose the initial instant such that y, =0 for any €& and for ¢t =0. If the initial
values of z;,y; (i = 1, 2) have been chosen such that conditions 1-4 are satisfied, then the
equations of motion with Hamiltonian (1.1) have, for sufficiently small esk0, a periodic
solution of period T, which can be expanded in a series in powers of the small parameter &

with periodic coefficients of period T and which reverts to solution (1.2) when e=0 . We
will write this solution as
81 = 0t +eg1® (0y8) + . . ., g3 =%0yt + Yo + ga™ (0y8) + ..., (1.3)
Gi=z+eW(t)+ ..., GG=z+ GV (0. 0)+ .. 5 x=1I1/m

All functions on the right-hand sides of (1.3) are periodic with period 2xm in the variable
w, = @,f; the ellipses denote terms of higher order of smallness in e.

2. Introduction of perturbations in a neighbourhood of the periodic sol-
ution. We will investigate the orbital stability of the periodic solution (1.3). For this
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we change to the new canonical variables w,, ¢, I;, ps {w, = ®,?) such that we obtain the
periodic solution (1.3) when ¢, = p, = I, = 0. The variables g¢,, p,, I, are perturbations of
the periodic solution (1.3), where g¢,, p, are perturbations of the first order of smallness
and [I,, as an action variable, is a quantity of the second order of smallness.

We introduce the perturbations by the formulas

g1=w+ ng"”(w> (2.1)
g2 =%w1 -+ Y2+ E e g% (1) + go
Gl = + 1;21 Sng') (w1) + Il ~— %Pz + "Z]] ekG(tk) (w;. G2, 11, pg)

G =22 + kZ G (w1) + pe
-]

The functions G¥' are selected such that transformation (2.1) is canonical and G& (04, 0,0,0) =
0 for any k=14,2,.... For the generating function

S=':2| e*Sy (81, £2,11. pa) (2.2)
we have the equations =

a8 S as as
= oy =0 =G =6 (2.3)

From (2.1)-(2.3) we find
So = gy (z; -+ I, — %py) + 81 (22 + P2) — VaPs (2.4)

Sy== — (I, — %ps) g1 )(Ex) - P!&'m (81) + E:Gm (81) +
&1
S{GP) €) — (& + ya) —QQ}JE

dg{") () degld ) | dG{ tw)
GS:I) =— (I — "Pi) dll’l — Pa din qa v,
3. To find the stability conditions for the periodic solutions

(1.3) we will make wuse of  Barrar's theorem /2/. The Hamiltonian of the
perturbed motion, expanded in powers of [, p,, ¢, ¢ in a neighbourhood of the.initialvalues

from which the solutions (1.3) arise, with due regard to the fact that in the solutions (1.3)
the energy integral equals

Hy (z)) + oz, + & {H, (wy, ¥, + yg, 2,, 2T5) + 0,G1V (wy) + @GV (wy)} + O (¢7)
is written as

H*= ‘01[1+T7" d,;f: pe® — 6 — %8 ZH: Do — % ——s- dzg + 1ips + (3.1)
.4
G 1 g G pt o e +
8 2]
{TDBH,+—D'H1+IID7”1'-TgD‘H1+——LD= L+

71- a;fl I+ G ) L + G ( ‘gf: (11— %p2) +- Lz)} +

R (w1, g2, I, pe, ©)

1 d®H d¢H,
Li=L;+ - - dz: 112+—"”2 dz: Iips?
1 il ¢ 1 d$H, d3H
=g T P e bt — k- L
/] a
D=Qz7y:+112 0z, — P25 gz

(R relative to ¢ has an order of smallness higher than the first, relative to ¢, and p,,
higher than the fourth, and relative to I,, higher than the second).

The Hamiltonian of the perturbed motion is a (2am)-periodic function of the variable wy.
We represent it in the form

H* = @, + e,

1 2am anm

Oy = 5= S H* (w1, g3, 1}, pe, €) dwy, (02)‘— S O duy =0

o ¢
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Let us consider a Hamiltonian XK, which is the quadratic part of (M, in the variables g, ps

K = ap® + ecqp + ebgt. (3.2)
=1 a2 8’<H,> 9 <Hy RHyy |
a= i e e N : { TR M T (3.3)
1 ) 2 BHo (1) _.__ O<Hyp [d*H,
2 GiDHx d‘z-"}’ G =— 32, (dzﬂ)
bee 1 PA<Hy P o2 <Hyy  9%<Hy
2 oy ! T 01,8y, 0zy Oy
If
= 4eab — e3¢ > 0

then the characteristic equation corresponding to (3.2) has two purely imaginary complex-
conjugate roots =+ ilfz = 4= i]/zQ . Otherwise, the periodic solution (1.3) is unstable.
As a result of the canonical transformation

wy = wy, gy = haV 3, sin w, — BV 2, cos wy' (3.4)
I, = eIy, p,=¢hra™ V2I3 cos wy
(@=sign b (QQ@ | b )W, B=c2|b|Q))

having the valgnce 1 | e we obtain a new Hamiltonian of the perturbed motion

H** = o, + Ve {K, U, I) + Ky (wy, wy, I, 1,)} (3.5)
' 2n.m 1 2a!n 2nm
<K1= m S (Dl (w;, Il, I;) dwhm; S S K,dwl dw’EO)
] [] 0

In (3.5) we have omitted the primes on the new variables. Transformation (3.4) enables us to
examine the variation of the variable [, in the ring V,= {p, < I, < ps p1» P> 0} and the
Hamiltonian H** is an analytic function in all its arguments in a domain of phase space M* =
T*XV, where V=V ,xV, V,CR} V,, V, are closed sets.

We will write out the expression for K, (I, I,) to within terms of the first order of
smallness in & and of the second order of smallness in [, [,

Ky (1, I) = Qsignbls 4+ 5 Ve 200 H" o O Hy

o 16 "oyt
1 - BHy ik ) .
QT(XZGZ—‘T;‘—:—-?-CL 6y<’a::>>11[’+ O (s, 1), i,j=1,2

1?2+

We consider the determinant

M it VeKy)  d(oy+ ¥V eKy)

4 B’ia,j aIi V—
ot _ — N; "'=1,2
0((0111+V3K1) 0 : v
-,
2
N=— Voot 280 4 o@n Iy, j=1,2

If N=0, then the Hamiltonian H** of the perturbed motion, defined in (3.5), satisfies
all the hypotheses of Barrar's theorem and, consequently, the periodic solution (1.3) 1is
orbitally stable. When @ =0 all the arguments remain true, but here it is necessary form-
ally to set [ =0 in all the calculations. Thus, we have proved the following:

Theorem. Let the Hamiltonian of an autonomous system with two degrees of freedom be
defined by Eq. (1.1) and let the initial values of the generating solution (1.2) be chosen
such that conditions 1-4 of Poincar&'s theorem on the existence of periodic solutions of the
perturbed system are satisfied. Then, if these initial values satisfy the conditions

a::. 2% CHy) >0, 0% (3.6)
3% <Hy> 3‘(”1) — PR Hy \2 e
9z3 oy ( 9z, Oyy ) >0, o=0
:‘%;i;_&ago, (oqb() (3.7

[az ;;. +( ﬁ +a‘1 au)] (Hp» 550, 0=0
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then the periodic solutions (1.3) are orbitally stable.

4, Periodic motions of an artificial satellite. As an application we consider
the problem of the periodic motions of a dynamically symmetric rigid body relative to the
centre of mass in a circular orbit in a central gravitational field.

At the present time steady-state and planar periodic motions relative to the centre of
mass of a dynamically symmetric artificial satell‘*e in a circular orbit have been most comp-
letely studied. In a number of papers (2mm)-peric . solutions have been constructed in an
elliptic orbit, coinciding when e=0 with (2am/n)-periodic Liapunov solutions in the neighbour-
hood of the steady-state solution, which yield planar motions, and their stability in the linear
approximation has been investigated (m and n are simple prime integers). A survey of the methods
mentioned is given in /3/ *). The problem of periodic motions relative to the centre of mass
of a dynamically symmetric artificial satellite with an energy ellipsoid close to a sphere in
a circular orbit has been examined in /4/. Here we Irefine certain results of /4/ connected
with the proof of the existence of periodic Poincare solutions and we make a strictly non-linear
analysis of the orbital stability of the resultant soclutions.

We fix an arbitrary point on the satellite's orbit, taking it to be the orbit's perigee.
In Fig.l, OXYZ is a Kdnig coordinate system with origin at the satellite's centre of mass.

Its axis OY is directed along the binormal to the orbit, while
0X and 0Z are directed, respectively, along the transversal
and the normal to the orbit at its perigee. The angles p
and © determine the orientation of the kinetic moment vectox
L relative to the coordinate system OXYZ, ¢ is the angle
between the vector L and the satellite's axis of dynamic
symmetry (the Oz axis), ¢ is the satellite's angle of rotation
around the vector L, ¢ is the angle of rotation of the vector
L around the satellite's axis of dynamic symmetry.

The satellite's motion relative to the centre of mass in
a central gravitational field can be described by a system of
canonical equations with the Hamiltonian /5/

H = K(Lvl) - U(LaLru“on —‘V), v = Gyl
L,=Lcosp(|L, | <L), I =Lecosd (|| <L)
Here oy is the angular velocity of the motion of the satellite's centre of mass along the
orbit, L is the modulus of the kinetic moment vector, and L,,! are the projections of the

kinetic moment vector onto the normal to the orbit's plane and onto the axis of dynamic
symmetry, respectively. The kinetic energy X and the force function U, respectively, equal

= A=) A+ P[0, U=-For(A—0)y?
y=p¥V 1—atcosS — -;—V1—ﬂ2(1—a)sin(\p+S) -+

1 .
=V 1—p2(1 + a)sin(y — S5)
S=v—o0, a=cosp = L,/L,f = cos® = /L
Here A and C are, respectively, the satellite's equatorial and polar moments of inertia
(45 C), and y is the cosine of the angle between the radius-vector of the satellite's centre
of mass relative to the centre of attraction and the axis of dynamic symmetry. Since the angle
¢ is a cyclical coordinate, its corresponding momentum !/ is an integral of the motion [ =,

and the order of the equations of motion can be reduced by two. The transformation A =0 —v
leads to an autonomous system with two degrees of freedom and with the Hamiltonian

H* = H — 0oLy = K (L, lo) — 0oLy — U (L, Ly, ¥, A) (4.1)

Wwe shall seek periodic solutions of the canonical equations of motion with Hamiltonian
(4.1) when the satellite's inertia ellipsoid is close to a sphere. Let

A =Jo+eA1,C=Jo+eC,, B<1

We expand the Hamiltonian (4.1) in series in powers of the small parameter & up to terms of
the first order of smallness in e, inclusive

*) See also: SIDORIUK M.E., Certain problems of the motion of artificial satellites relative
to the centre of mass under the action of a gravitational moment. Dissertation for the degree
of Candidate of Physico-Mathematical Sciences. Moscow, MFTI, 1981.
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H¥e - L¥]]y — tolLy + eH1 + O (e2), 4.2)

Hy== — A,L%/2J* — —%“Doz (AL — Cyy?

when &==0 in the generating motion

L =1Loy Ln=1Lny $=0t+%, A= —wgt+h, 0=L/Jo (4.3)

the kinetic moment vector executes a translation along the orbit with angular velocity ®y,
while the satellite rotates around this vector with constant angular velocity .

We assume that the generating solution is periodic with period T. If conditions 1-4 of
Poincaré's theorem (Section 1) are satisfied, then for fairly small & 3 0 periodic solutions
of period T exist, arising from (4.3). From the equations of motion with Hamiltonian (4.1)
it follows that periodic Poincar& solutions are possible in a circular orbit in only two
cases: a) ® == Wy, b) ©==20. Conditions 1,2 are satisfied; we will investigate the remaining
conditions in each case.

Let ® = @y, i.e., Lo* == Ja0e. In this case the function (H,) defined by (4.2) and by the
~~-~lity within the parentheser #~"7 -ri=~~ ~ondition 4 equals

TR — 83 —



599

otherwise, it is unstable.
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Now let Ay = 5/2, Ay = 3n/2, then
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(z: A<z —1V3, 0< 2z 1/YV3) there correspond two distinct initial values of a = Lp /Lo, wWhile
for solutions of the second type, to each Pe B, = {2 —1V3< <0, 1/V3 <2< 1) there also cor-
respond two distinct values of «. In /4/ the initial values for the angles A which correspond
to periodic Poincar& solutions are incorrect.

The stability conditions for the solutions are written as

2 2 —n —
T T =32 (4 — C)B( + ) VT—Fx VT—asin24>0 (4.9)

2L o — 20 (4 — C)B(L + o) VT— B VT —sin 2hemk0

The second of these conditions is satisfied if a, P 3= 0, 41, while the first condition is
equivalent to .
e (4, — C;) B sin 24, > 0 (4.10)

From (4.10) it follows that solutions of the first type are orbitally stable if 4, > C; and
<Pt ie., —n2<C® <w/2, or if 4; <<, and —1<P<O, i.e., n/2<8 < 3n/2.
Periodic solutions of the second type are orbitally stable if A; >C, and —1 < B <0 or if
A, <(C, and 0 < B < 1. Hence we see that if periodic solutions of the first type are orbitally
stable, then solutions of the second type are unstable, and vice versa.
The author thanks A.P. Markeev for suggesting the problem and for his interest.
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ON THE IMPULSIVE MOTION OF A RIGID BODY AFTER
IMPACT WITH A ROUGH SURFACE®

V.A. SINIDYN

An absolutely rigid plane body in contact with a plane surface of finite
area, at each point of which the friction is lecally defined by Coulomb's
law, with a constant sliding coefficient of friction, is considered. A
more precise model of the motion of a body over a rough surface /1/ is
obtained. Differential equations of a plane rigid body (a plate) with a
circular contact area are derived. The relation between the sliding
velocity of the centre of the base area and the angular velocity of the
plate is obtained in special cases. The condition under which the instant-
aneous centre of the base velocity in the course of impulsive motion
coincides identicallywith the base area centre is derived.
The collision between a rigid and a rough surface has been investigated under conditions
of point contact (/2/ etc.)

1. Let us consider the basic assumptions made in /1/ on the interaction between a rigid
body with a plane base and a plane rough surface, when the body moves on it.

For absolutely rigid bodies and planes the problem is indeterminate, since contact occurs
at an infinite number of points. Hence, a small deformation of the surface proportional to
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